3.139 \(\int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=183 \[ \frac {163 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {95 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{48 a^3 d}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}-\frac {17 \sin (c+d x) \cos ^2(c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

-1/4*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)-17/16*cos(d*x+c)^2*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)
+163/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-197/24*sin(d*x+c)/a^2
/d/(a+a*cos(d*x+c))^(1/2)+95/48*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/a^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2765, 2977, 2968, 3023, 2751, 2649, 206} \[ \frac {95 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{48 a^3 d}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a \cos (c+d x)+a}}+\frac {163 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}-\frac {17 \sin (c+d x) \cos ^2(c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(163*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Cos[c + d*x
]^3*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)) - (17*Cos[c + d*x]^2*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d
*x])^(3/2)) - (197*Sin[c + d*x])/(24*a^2*d*Sqrt[a + a*Cos[c + d*x]]) + (95*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*
x])/(48*a^3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {\int \frac {\cos ^2(c+d x) \left (3 a-\frac {11}{2} a \cos (c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {\cos (c+d x) \left (17 a^2-\frac {95}{4} a^2 \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {17 a^2 \cos (c+d x)-\frac {95}{4} a^2 \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {95 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{48 a^3 d}-\frac {\int \frac {-\frac {95 a^3}{8}+\frac {197}{4} a^3 \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{12 a^5}\\ &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {95 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{48 a^3 d}+\frac {163 \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {95 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{48 a^3 d}-\frac {163 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {163 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {95 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{48 a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.35, size = 587, normalized size = 3.21 \[ -\frac {40 \sin \left (\frac {c}{2}\right ) \cos \left (\frac {d x}{2}\right ) \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{d (a (\cos (c+d x)+1))^{5/2}}+\frac {8 \sin \left (\frac {3 c}{2}\right ) \cos \left (\frac {3 d x}{2}\right ) \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d (a (\cos (c+d x)+1))^{5/2}}-\frac {40 \cos \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{d (a (\cos (c+d x)+1))^{5/2}}+\frac {8 \cos \left (\frac {3 c}{2}\right ) \sin \left (\frac {3 d x}{2}\right ) \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d (a (\cos (c+d x)+1))^{5/2}}-\frac {29 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{8 d (a (\cos (c+d x)+1))^{5/2} \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^2}+\frac {29 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{8 d (a (\cos (c+d x)+1))^{5/2} \left (\sin \left (\frac {c}{4}+\frac {d x}{4}\right )+\cos \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^2}+\frac {\cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{8 d (a (\cos (c+d x)+1))^{5/2} \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^4}-\frac {\cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right )}{8 d (a (\cos (c+d x)+1))^{5/2} \left (\sin \left (\frac {c}{4}+\frac {d x}{4}\right )+\cos \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^4}-\frac {163 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{4 d (a (\cos (c+d x)+1))^{5/2}}+\frac {163 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\sin \left (\frac {c}{4}+\frac {d x}{4}\right )+\cos \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{4 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-163*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(5/2)) +
(163*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(5/2)) - (
40*Cos[(d*x)/2]*Cos[c/2 + (d*x)/2]^5*Sin[c/2])/(d*(a*(1 + Cos[c + d*x]))^(5/2)) + (8*Cos[(3*d*x)/2]*Cos[c/2 +
(d*x)/2]^5*Sin[(3*c)/2])/(3*d*(a*(1 + Cos[c + d*x]))^(5/2)) - (40*Cos[c/2]*Cos[c/2 + (d*x)/2]^5*Sin[(d*x)/2])/
(d*(a*(1 + Cos[c + d*x]))^(5/2)) + (8*Cos[(3*c)/2]*Cos[c/2 + (d*x)/2]^5*Sin[(3*d*x)/2])/(3*d*(a*(1 + Cos[c + d
*x]))^(5/2)) + Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]
)^4) - (29*Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])^2
) - Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4])^4) + (29*
Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4])^2)

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 208, normalized size = 1.14 \[ \frac {489 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (32 \, \cos \left (d x + c\right )^{3} - 160 \, \cos \left (d x + c\right )^{2} - 503 \, \cos \left (d x + c\right ) - 299\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{192 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/192*(489*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2
*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x +
 c) + 1)) + 4*(32*cos(d*x + c)^3 - 160*cos(d*x + c)^2 - 503*cos(d*x + c) - 299)*sqrt(a*cos(d*x + c) + a)*sin(d
*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 3.96, size = 146, normalized size = 0.80 \[ \frac {\frac {{\left ({\left (3 \, {\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a} - \frac {23 \, \sqrt {2}}{a}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {668 \, \sqrt {2}}{a}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {465 \, \sqrt {2}}{a}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}} - \frac {489 \, \sqrt {2} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {5}{2}}}}{96 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/96*(((3*(2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/a - 23*sqrt(2)/a)*tan(1/2*d*x + 1/2*c)^2 - 668*sqrt(2)/a)*tan(1/2*
d*x + 1/2*c)^2 - 465*sqrt(2)/a)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) - 489*sqrt(2)*log(ab
s(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/a^(5/2))/d

________________________________________________________________________________________

maple [A]  time = 0.32, size = 242, normalized size = 1.32 \[ \frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (128 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+489 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-512 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-87 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{96 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x)

[Out]

1/96*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(128*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^6+4
89*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^4-512*
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^4-87*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2
)^(1/2)*cos(1/2*d*x+1/2*c)^2+6*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/cos(1/2*d*x+1/2*c)^3/a^(7/2)/si
n(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^4}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________